Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 48

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

Journal Articles

Validation of the hybrid turbulence model in detailed thermal-hydraulic analysis code SPIRAL for fuel assembly using sodium experiments data of 37-pin bundles

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Nuclear Technology, 210(5), p.814 - 835, 2024/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.

Journal Articles

Estimation method for residual sodium amount on unloaded dummy fuel assembly

Kawaguchi, Munemichi; Hirakawa, Yasushi; Sugita, Yusuke; Yamaguchi, Yutaka

Nuclear Technology, 210(1), p.55 - 71, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This study has developed an estimation method for residual sodium film and sodium lumps on dummy fuel pins in Monju and demonstrated sodium draining behavior through gaps among the pins, experimentally. The amounts of the residual sodium on the surface of the pins were measured using the three-type test specimens: (a) single pin, (b) 7-pin assembly, and (c) 169-pin assembly. The experiments revealed that the withdrawal speed of the pins and improvement of the sodium wetting increased drastically the amounts of the residual sodium. Furthermore, the experiments using the 169-pin assembly measured the practical amounts of the residual sodium in the dummy fuel assembly of short length and demonstrated sodium draining behavior through the dummy fuel assembly. The estimation method includes four models: a viscosity flow model, Landau-Levich-Derjaguin (LLD) model, an empirical equation related to the Bretherton model, and a capillary force model in a tube. The calculation predicted comparable amounts of the residual sodium with the experiments. An uncertain of the sodium wetting effects were close to 1.8 times the estimation values of the LLD model. With this estimation method, the amounts of the residual sodium on the unloaded Monju dummy fuel assembly can be evaluated.

Journal Articles

Data processing and visualization of X-ray computed tomography images of a JOYO MK-III fuel assembly

Tsai, T.-H.; Sasaki, Shinji; Maeda, Koji

Journal of Nuclear Science and Technology, 60(6), p.715 - 723, 2023/06

 Times Cited Count:1 Percentile:29.26(Nuclear Science & Technology)

Journal Articles

Numerical study of initiating phase of core disruptive accident in small sodium-cooled fast reactors with negative void reactivity

Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi

Journal of Nuclear Science and Technology, 13 Pages, 2023/00

 Times Cited Count:1 Percentile:68.31(Nuclear Science & Technology)

Journal Articles

Evaluation of fuel reactivity worth measurement in the prototype fast reactor Monju

Ohgama, Kazuya; Takegoshi, Atsushi*; Katagiri, Hiroki; Hazama, Taira

Nuclear Technology, 208(10), p.1619 - 1633, 2022/10

 Times Cited Count:4 Percentile:66.21(Nuclear Science & Technology)

Journal Articles

Numerical simulation of annular dispersed flow in simplified subchannel of light water cooled fast reactor RBWR

Yoshida, Hiroyuki; Horiguchi, Naoki; Ono, Ayako; Furuichi, Hajime*; Katono, Kenichi*

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08

Journal Articles

French-Japanese experimental collaboration on fuel-coolant interactions in sodium-cooled fast reactors

Johnson, M.*; Delacroix, J.*; Journeau, C.*; Brayer, C.*; Clavier, R.*; Montazel, A.*; Pluyette, E.*; Matsuba, Kenichi; Emura, Yuki; Kamiyama, Kenji

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Fuel-coolant interactions in the event of molten fuel discharge to the lower plenum of a sodium cooled fast reactor is under investigation as part of a French-Japanese experimental collaboration on severe accidents. The MELT facility enables the X-ray visualisation of the quenching of molten core material jets in sodium at kilogram-scale. The SERUA facility, currently under preparation, is presented for the investigation of boiling heat transfer at elevated melt-coolant interface temperatures. In this article, the status of the collaboration using these facilities is presented.

Journal Articles

Development of an integrated computer code system for analyzing irradiation behaviors of a fast reactor fuel

Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi

Nuclear Technology, 207(8), p.1280 - 1289, 2021/08

 Times Cited Count:3 Percentile:34.82(Nuclear Science & Technology)

Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.

Journal Articles

Evaluation of breach characteristics of fast reactor fuel pins during steady state irradiation

Oka, Hiroshi*; Kaito, Takeji; Ikusawa, Yoshihisa; Otsuka, Satoshi

Nuclear Engineering and Design, 370, p.110894_1 - 110894_8, 2020/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The objective of this study is to evaluate the reliability of a cumulative damage fraction (CDF) analysis for the prediction of fuel pin breach in fast rector using experimentally obtained fuel pin breach data for the first time. Six breached fuel pins were obtained from steady state irradiation in the EBR-II. Post irradiation examinations revealed that FP gas pressure was the main cause of creep damage in cladding, and that the stress contribution from FCMI was negligible. CDFs evaluated for these pins using in-reactor creep rupture equation, taking into account the irradiation history of cladding temperature and hoop stress due to FP gas pressure, were in the range of 0.7 to 1.4 at the occurrence of breach. This shows clearly that fuel pin breach occurs when the CDF approaches 1.0. The results indicate that CDF analysis would be a reliable method for the prediction of fuel pin breach when appropriate material strength and environmental effects are adopted.

Journal Articles

Irradiation growth behavior of improved Zr-based alloys for fuel cladding

Amaya, Masaki; Kakiuchi, Kazuo; Mihara, Takeshi

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1048 - 1056, 2019/09

Journal Articles

Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior

Uwaba, Tomoyuki; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

Nuclear Engineering and Design, 331, p.186 - 193, 2018/05

 Times Cited Count:4 Percentile:38.11(Nuclear Science & Technology)

A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup for discussion on the axial distribution of Cs, fuel-to-cladding mechanical interaction owing to the Cs-fuel-reactions by comparing the calculated results with post irradiation examinations.

Journal Articles

Thermal-hydraulic analysis of fuel assembly with inner duct structure of an advanced loop-type sodium-cooled fast reactor using ASFRE code

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 12 Pages, 2017/07

In the design study of an advanced loop-type SFR in JAEA, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been adopted as one of the measures to enhance safety of the reactor. Thermal-hydraulics evaluations of FAIDUS under various operation conditions are required to confirm its design feasibility. In this study, after the applicability of ASFRE to FAs was confirmed through the numerical analysis using simulated FA tests, thermal-hydraulic analyses of a FA without an inner duct and a FAIDUS were conducted. Through the numerical analyses, it was indicated that asymmetric temperature distribution in a FAIDUS would not be occurred and characteristics of the temperature distribution was almost the same as that in a FA without an inner duct. Under the low flow rate condition, it was expected that the local flow acceleration caused by the buoyancy force in a FAIDUS could bring the flow redistribution and make the temperature distribution flat.

Journal Articles

Comparative study on neutronics characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor

Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*

Mechanical Engineering Journal (Internet), 4(3), p.16-00592_1 - 16-00592_9, 2017/06

Journal Articles

Analyses of deformation and thermal-hydraulics within a wire-wrapped fuel subassembly in a liquid metal fast reactor by the coupled code system

Uwaba, Tomoyuki; Ohshima, Hiroyuki; Ito, Masahiro*

Nuclear Engineering and Design, 317, p.133 - 145, 2017/06

 Times Cited Count:9 Percentile:65.3(Nuclear Science & Technology)

The coupled numerical analysis of mechanical and thermal behaviors was performed for a wire-wrap fuel pin bundle subassembly irradiated in a fast reactor. For the analysis, the fuel pin bundle deformation analysis code BAMBOO and the thermal hydraulics analysis code ASFRE exchanged the deformation and temperature analysis results through the iterative calculations to attain convergence corresponding to the static balance between deformation and temperature. The analysis by the coupled code system showed that radial distribution of coolant temperatures in a subassembly tended to be flattened as a result of the fuel pin bundle deformation governed by cladding void swelling and irradiation creep. Such temperature distribution was slightly analyzed as a result of the small bowing of the fuel pins due to the cladding-wire interaction even when no bundle-duct interaction occurred. The effect of the spacer wire-pitch on deformation and thermal hydraulics was also investigated in this study.

Journal Articles

Comparative study on burnup characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor

Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04

Journal Articles

Tradeoff analysis of metal-fueled fast reactor design concepts

Stauff, N. E.*; Ohgama, Kazuya; Aliberti, G.*; Oki, Shigeo; Kim, T. K.*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

Journal Articles

Design study of a 750 MWe Japan sodium-cooled fast reactor with metal fuel

Ohgama, Kazuya; Ota, Hirokazu*; Ikusawa, Yoshihisa; Oki, Shigeo; Ogata, Takanari*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

Journal Articles

Characterization of the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel

Aihara, Haruka; Arai, Yoichi; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki

Procedia Chemistry, 21, p.279 - 284, 2016/12

BB2015-3214.pdf:0.31MB

 Times Cited Count:5 Percentile:94.26(Chemistry, Inorganic & Nuclear)

Journal Articles

Development of thermal hydraulics analysis code ASFRE for fuel assembly of sodium-cooled fast reactor; Modification of distributed resistance model and validation analysis

Kikuchi, Norihiro; Ohshima, Hiroyuki; Tanaka, Masaaki; Hashimoto, Akihiko*

Dai-21-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 4 Pages, 2016/06

For the thermal-hydraulic design and safety assessment regarding a fuel assembly of sodium-cooled fast reactors, a subchannel analysis code ASFRE has been and is continuously developed in JAEA. In the numerical simulation of ASFRE confirmed that the tendency to overestimate the maximum coolant temperature in a fuel assembly still remains. In this study, Distributed Resistance Model (DRM), which deals with wire-spacer wrap volumetric effect in subchannels on peripheral and axial directions, was modified and its calibration factor was optimized in order to improve the prediction accuracy of the maximum coolant temperature. A numerical simulation of a 37-pin bundle sodium experiment was also carried out and the result showed the validity of the modified DRM.

48 (Records 1-20 displayed on this page)